

Future developments

What do we need for our applications?

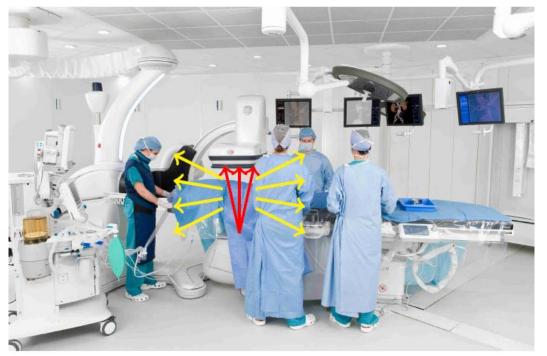
Virtual Training Course on Mathematical Modelling for Radiation Processing

Thomas DESCHLER Aerial, 250 rue Laurent Fries, 67400 ILLKIRCH, France <u>t.deschler@aerial-crt.com</u>

Industrial needs for MC simulation

- Irradiation installation shielding
- Beam qualification
 - shape, energy, uniformity,...
- OQ

Feasible with currently existing tools


- PQ \rightarrow a tool which helps to map dose inside the product
 - product the most realistic possible
 - taking into account its variability
 - cold and hot spots in a reasonable time (for dosimeters placement)

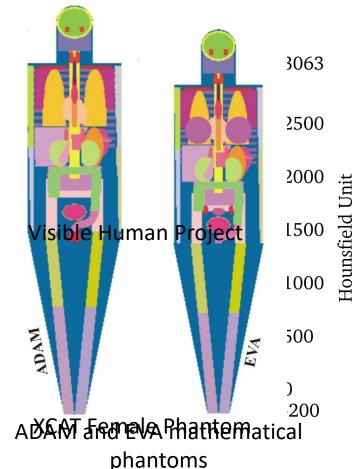
 \rightarrow What can we learn from medical use of Monte Carlo simulations?

Medical Imaging - Problematics

- PhD thesis work.
- Interventional radiology: X-Ray imaging during medical procedures.
- Radioprotection problematics for patient and staff.
- Patient problematic: when deterministic effects thresholds are exceeded
 - \rightarrow Estimation of patient exposure
- **Staff problematic:** optimization of exposure linked to the scattered beam
 - → Pedagogic purposes

Primary beam, scattered beam

 \rightarrow Monte Carlo simulation particularly adapted to answer those problematics.


• Deschler, T. (2018). Development of a dosimetric system for interventional radiology (Doctoral dissertation, Strasbourg).

Future developments

Aerial

Patient representation in simulations

- How to represent patient in Monte Carlo simulations?
 - Realism is the key
- Mathematical phantoms
 - Approximation of patient...
- Anthropomorphic voxelized phantoms
 - Can be deformed to fit patient morphology
 - Organs already segmented
- CT scan patient images
 - in DICOM file format (*Digital imaging and communications in medicin*)
 - Example of Visible Human Project CT Datasets
 - Organ segmentation \rightarrow complex task

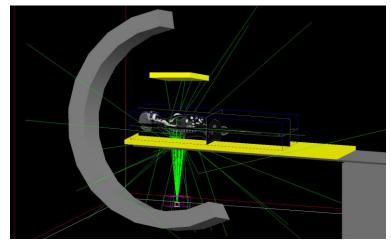
- Kramer, R., Zankl, M., Williams, G., & Drexler, G. (1982). The calculation of dose from external photon exposures using reference human phantoms and Monte-Carlo methods Pt 1 (GSF-S--885). Germany
- Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BM. 4D XCAT phantom for multimodality imaging research. *Med Phys*. 2010;37(9):4902-4915. doi:10.1118/1.3480985
- Ackerman MJ. The Visible Human Project: a resource for anatomical visualization. Studies in Health Technology and Informatics. 1998;52 Pt 2:1030-1032.

08/07/2021

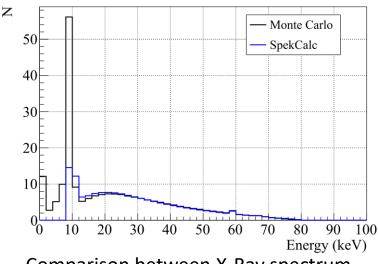
Future developments

Aerial	Supporte	ed natively GATE Voxe	Supported native	in t		
	Hounsfield Unit = $\left(\frac{\bar{\mu}}{\bar{\mu}_{water}} - 1\right) 1000$	SustanceAirLungFatWaterCerebrospinal SluidKidneyBloodMuscleGrey matterWhite matterLiverSoft tissueBone	HU -1 000 -500 -100 to -50 0 15 30 +30 to +45 +10 to +40 +37 to +45 +20 to +30 +40 to +60 +100 to +300 +700 (cancellous bone) to +3 000 (dense bone)	Skin Dose	image Organ Dose	

• Schneider, W et al. "Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions." *Physics in medicine and biology* vol. 45,2 (2000): 459-78. doi:10.1088/0031-9155/45/2/314


Ms.

Solving patient problematic

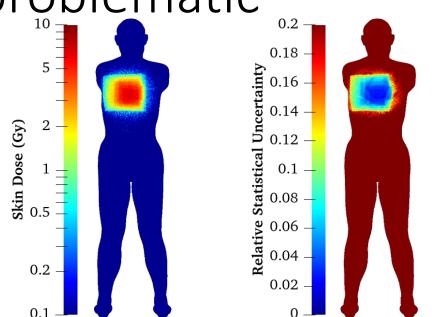

- Software developed during thesis to reconstruct patient dosimetry after interventional radiology procedures using:
 - DICOM RDSR (*radiation dose structured report*) files of the procedure (containing data of the procedure: peak energy of the X-Rays, intensity of the tube, C-arm angulation, ...)
 - GATE v8.1
 - XCAT phantoms (patient CT scan not available in most cases)
 - X Ray spectrum generated using SpekCalc (simulation of X-Ray tube very time consuming)

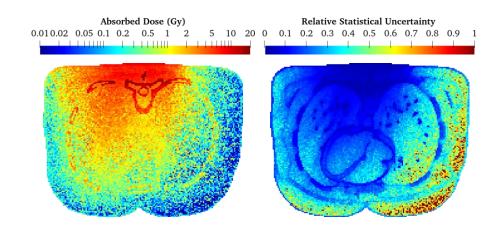
→ Dose to skin, dose to organs, Equivalent dose, Effective dose

- Deschler, T. (2018). *Development of a dosimetric system for interventional radiology* (Doctoral dissertation, Strasbourg).
- Poludniowski GG, Evans PM. Calculation of x-ray spectra emerging from an x-ray tube. Part I.Electron penetration characteristics in x-ray targets.Med. Phys., 34(6Part1):2164–2174 (2007).
- Poludniowski GG. Calculation of x-ray spectra emerging from an x-ray tube. Part II. X-ray production and filtration in x-ray targets.Med. Phys., 34(6Part1):2175–2186 (2007).

Visualization of a Gate simulation

HIMILRING, MIL


Aerial

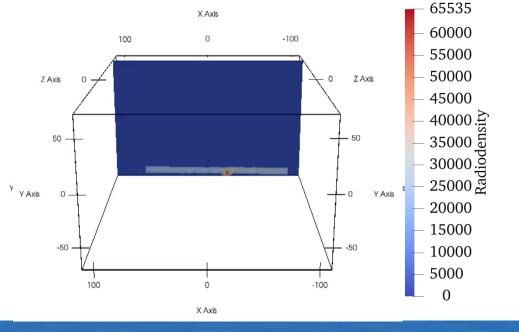


Solving patient problematic

- Computation Time: (info proc)
- Dose skin max.: 9.0 Gy (3.1%)
- Dose organes: (stat. ucty <2%)
 - Heart: 510.9 mGy
 - Poumons: 646.3 [L:869.1-R:437.6] mGy
 - Stomac: 430.3 mGy
 - Liver: 228.6 mGy
 - Pancreas: 160.8 mGy
 - Spleen: 680.1 mGy
 - Skin: 102.3 mGy
- Effective dose: 207 mSv (1.6%)

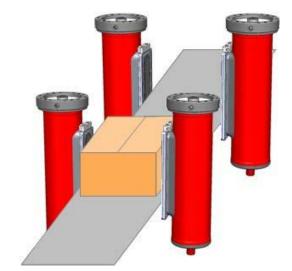
 Deschler, T. (2018). Développement d'un système dosimétrique pour la radiologie interventionnelle (Doctoral dissertation, Strasbourg).

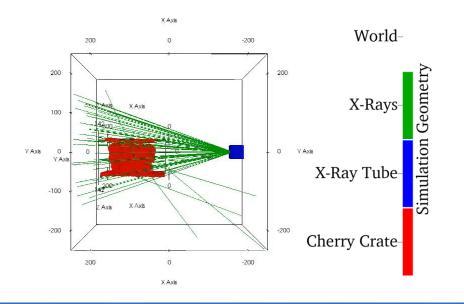
Industrial Examples

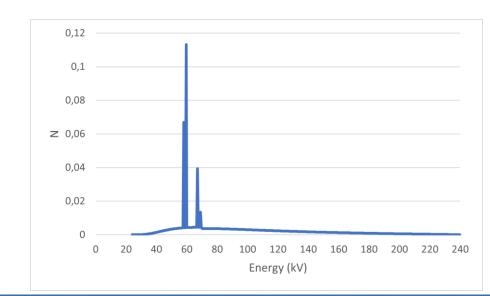

Industrial Example 1

- Cherries Crate
 - Packaging size: 210x160x100mm
- Product numerized with a CT scan on a conveyor belt
 - DICOM image with 288 slices
 - Voxel resolution: 1x1x1.48 mm³

Courtesy of Nuctech Company, Ltd

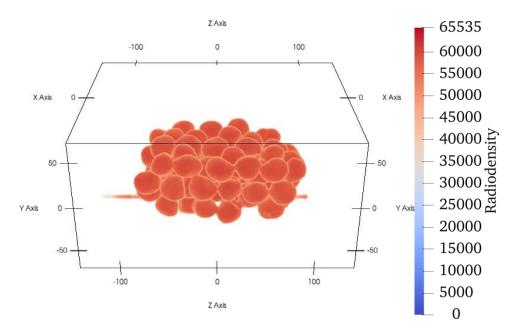

08/07/2021


a minimum minimum



Simulation Geometry

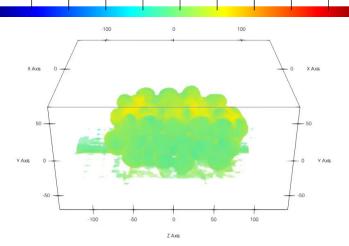
- Irradiated with X-Rays of 240 kVp
- X-ray spectrum generated from SpekCalc.
- The cherries crate is irradiated one side after another in the simulation.
 - Half particules on each side.
 - The crate is automatically rotated in Gate.



HERE ALL ALL AND A DESCRIPTION OF A DESC

Simulation Segmentation

- **Segmentation problem:** Associate a material to an interval of radiodensity
- Selecting only cherries
 → radiodensity over 40k
- In simulation:
 - Under 40k: Air
 - Over 40k: Water
- \rightarrow clean segmentation between volumes



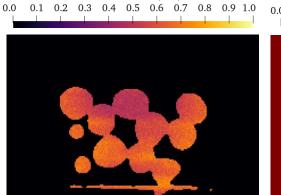
HERE ALL ALL AND A DESCRIPTION OF A DESC

Simulation Results Absorbed Dose (a.u.)

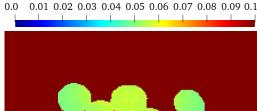
Relative Statistical Uncertainty0.00.010.020.030.040.050.060.070.080.090.1

- Parallelized simulations: 2^e8 X-Rays on 16 cores (Intel Xeon Platinum)
 - Total number of X-Rays: 3.2e9
 - Computation Time: ~22hours/per core
- Relative statistical uncertainty: μ =5.2% σ =0.3%

Aerial

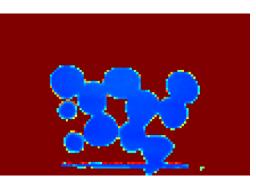

Variance Reduction: Dosel Size

- **Dosel:** Dose Map Voxel
- More particles interacting in a volume
 → less statistical uncertainty
- Volume augmentation of a factor 8 (~2x2x2mm³)
 - Mean relative statistical uncertainty: 2.4%
 - Can achieve a mean statistical uncertainty of 5% in 5h
- Volume augmentation of a factor 64 (~4x4x4mm³)
 - Mean relative statistical uncertainty: 1.3%
 - Can achieve a mean statistical uncertainty of 5% in 1h30

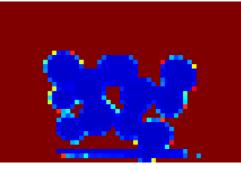

$$\sigma \propto \frac{1}{\sqrt{n}} \propto \frac{1}{\sqrt{t}}$$

Dosel Size	Δ̄ (%)	Ratio	f _{time}
Origin	5.2	1	22h

Deschler, T., et al. "Dose calculations in heterogeneous volumes with the GATE Monte Carlo software for radiological protection." *Radioprotection* 54.2 (2019): 125-132.



Absorbed Dose (a.u.)



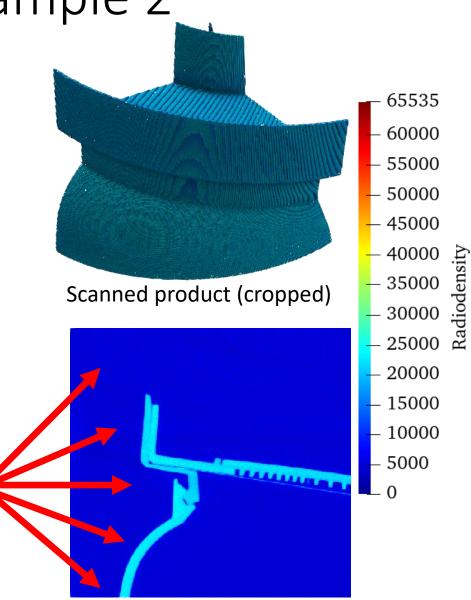
Relative Statistical Uncertainty

08/07/2021

a minimum.

Variance Reduction: Dosel Size

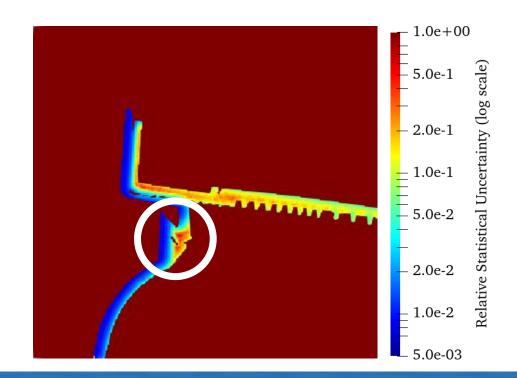
- Dose mapping in product qualification (PQ):
 - Interesting to estimate dose hot/cold spots in a minimum of time.
 - And to optimize the placement of dosimeters
- But spatial resolution is greatly diminished...
 - Cannot be used for surface dose mapping...


HIMPORTON CONTRACT

Aeria

Industrial Example 2

- Industrial product acquired with CT scan of very good resolution
- Original voxel size: 32.4x32.4x32.4µm³
- Original voxel count: near 4.5 billion
- Size of the file: 9 GB
 - \rightarrow Need to resample image in order to optimize computing resources
- Resampling to voxel size: 135.6x136.2x130.7µm³
- New size of the file: 120 MB
 - \rightarrow Way better
- Segmentation using radiodensity of materials:
 - between 18k and 25k \rightarrow Water
 - other \rightarrow Air
- Simulation:
 - Irradiation with a monoenergetic electron beam of 400 keV



Results

- 45 cores (Intel Xeon Platinum)
- Number of electrons: 2e8 per core (9e9 total)
- Simulation time: 8h per core
- 2.5 GB of RAM per core (113 GB total)

- Very good uncertainty at entrance surface (< 5%)
- Dose distribution can easily be visualized (cold/hot spots)

1.0e+00

______5.0e-1

– 2.0e-1 = 1.0e-1

= 5.0e-2

2.0e-2

1.0e-2

5.0e-3

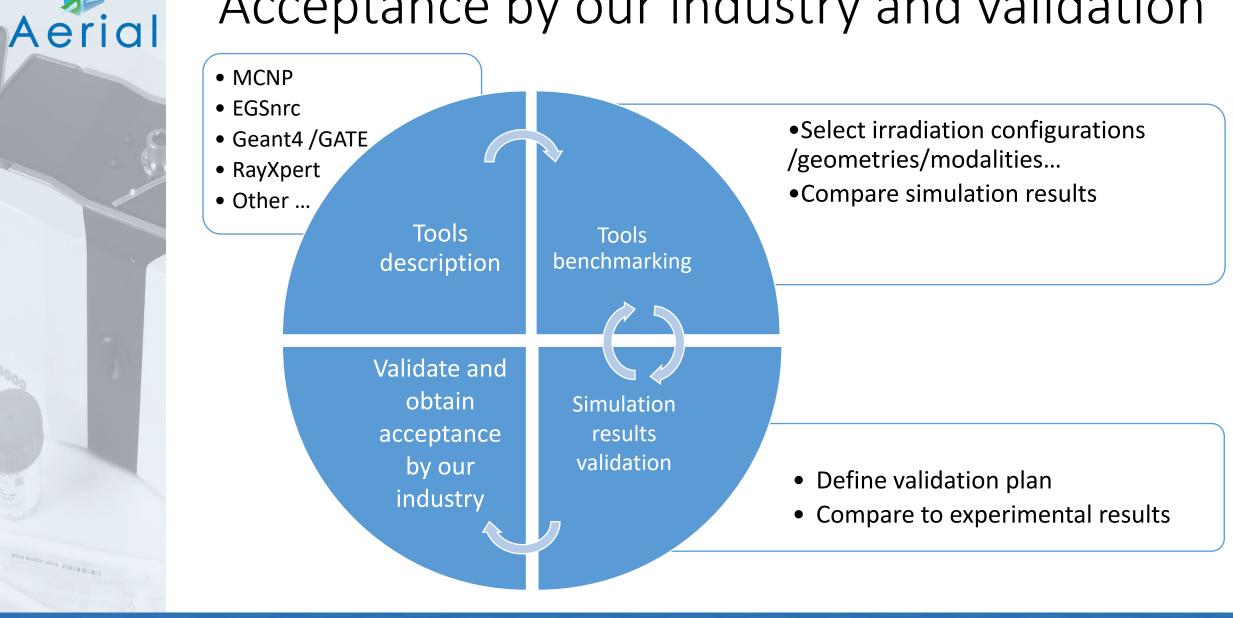
2.0e-3

1.0e-3

= 5.0e-4

- 2.0e-4

1.0e-04


Limitations

- Voxelized image resolution limitations:
 - Too low:
 - - blurry interfaces
 - - difficulties to segment product materials
 - + less time to converge
 - Too high:
 - - large memory consumption
 - - high computation time to converge
 - + high precision of dose maps

\rightarrow Voxel resolution optimization is a key point to master

NUMBER OF STREET, STRE

Acceptance by our industry and validation

Abbas NASREDDINE Ph.D, Research Scientist <u>a.nasreddine@aerial-crt.com</u>

Thomas DESCHLER Ph.D, Research Scientist t.deschler@aerial-crt.com

la ponne dose of innovation

* the best dose of innovation

Florent KUNTZ Ph.D, Project Manager florent.kuntz@aerial-crt.com